Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483744

RESUMEN

The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD50 dose of A. hydrophila. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture.

2.
Mol Biotechnol ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363529

RESUMEN

The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.

3.
Anal Methods ; 16(8): 1133-1149, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38314866

RESUMEN

Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.


Asunto(s)
Cannabis , Alucinógenos , Drogas Ilícitas , Humanos , Detección de Abuso de Sustancias/métodos , Alucinógenos/análisis , Drogas Ilícitas/análisis , Agonistas de Receptores de Cannabinoides/análisis , Cabello/química
4.
Int J Pharm ; 651: 123777, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181992

RESUMEN

Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.


Asunto(s)
Simeticona , Veganos , Niño , Humanos , Estudios de Factibilidad , Pectinas , Impresión Tridimensional , Liberación de Fármacos , Tecnología Farmacéutica/métodos
5.
J Biol Phys ; 50(1): 1-27, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38055086

RESUMEN

Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth. Furthermore, the manuscript presents an overview of cellular stimuli observed by combining surfaces that mimic the complex biochemistries and different geometries of the extracellular matrix, with microfluidic channels regulating the transport of fluids, soluble factors, etc. We have also explained the concept of mechanotransduction, which defines the relation between mechanical force and biological response. Furthermore, the manipulation of cellular microenvironments by the use of microfluidic systems has been highlighted as a useful device for basic cell biology research activities. Finally, the article focuses on highly integrated microfluidic platforms that exhibit immense potential for biomedical and pharmaceutical research as robust and portable point-of-care diagnostic devices for the assessment of clinical samples.


Asunto(s)
Mecanotransducción Celular , Microfluídica
6.
Vaccines (Basel) ; 11(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37897004

RESUMEN

SARS-CoV-2 spike protein is an essential component of numerous protein-based vaccines for COVID-19. The receptor-binding domain of this spike protein is a promising antigen with ease of expression in microbial hosts and scalability at comparatively low production costs. This study describes the production, purification, and characterization of RBD of SARS-CoV-2 protein, which is currently in clinical trials, from a commercialization perspective. The protein was expressed in Pichia pastoris in a large-scale bioreactor of 1200 L capacity. Protein capture and purification are conducted through mixed-mode chromatography followed by hydrophobic interaction chromatography. This two-step purification process produced RBD with an overall productivity of ~21 mg/L at >99% purity. The protein's primary, secondary, and tertiary structures were also verified using LCMS-based peptide mapping, circular dichroism, and fluorescence spectroscopy, respectively. The glycoprotein was further characterized for quality attributes such as glycosylation, molecular weight, purity, di-sulfide bonding, etc. Through structural analysis, it was confirmed that the product maintained a consistent quality across different batches during the large-scale production process. The binding capacity of RBD of spike protein was also assessed using human angiotensin-converting enzyme 2 receptor. A low binding constant range of KD values, ranging between 3.63 × 10-8 to 6.67 × 10-8, demonstrated a high affinity for the ACE2 receptor, revealing this protein as a promising candidate to prevent the entry of COVID-19 virus.

7.
Stem Cell Rev Rep ; 19(8): 2650-2682, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37704835

RESUMEN

Maintenance of the visual function is the desired outcome of ophthalmologic therapies. The shortcomings of the current treatment options, like partial recovery, post-operation failure, rigorous post-operative care, complications, etc., which are usually encountered with the conventional treatment options has warranted newer treatment options that may eliminate the root cause of diseases and minimize the side effects. Cell therapies, a class of regenerative medicines, have emerged as cutting-edge treatment option. The corneal and retinal dystrophies during the ocular disorders are the major cause of blindness, worldwide. Corneal disorders are mainly categorized mainly into corneal epithelial, stromal, and endothelial disorders. On the other hand, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, Stargardt Disease, choroideremia, Leber congenital amaurosis are then major retinal degenerative disorders. In this manuscript, we have presented a detailed overview of the development of cell-based therapies, using embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, dental pulp stem cells, induced pluripotent stem cells, limbal stem cells, corneal epithelial, stromal and endothelial, embryonic stem cell-derived differentiated cells (like retinal pigment epithelium or RPE), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells etc. The manuscript highlights their efficiency, drawbacks and the strategies that have been explored to regain visual function in the preclinical and clinical state associated with them which can be considered for their potential application in the development of treatment.


Asunto(s)
Enfermedades de la Córnea , Degeneración Retiniana , Humanos , Córnea , Tratamiento Basado en Trasplante de Células y Tejidos , Retina , Enfermedades de la Córnea/terapia
8.
Artículo en Inglés | MEDLINE | ID: mdl-37478555

RESUMEN

Protein A chromatography is widely used for isolation of monoclonal antibodies (mAbs) from cell culture components. In this study, the effect of different process parameters of the Protein A purification namely, binding pH, elution pH, flow rate, neutralization pH and tween concentration, on the concentration and quality of the purified mAb were evaluated. Using design of experiments approach, the critical process parameters of protein A chromatography were identified and experimentally optimized. Their impact on quality attributes, such as size variants and charge variants, of the mAb was studied. Multivariate data analysis was subsequently performed using multiple linear regression and partial least squares regression methods. It was observed that the elution pH primarily governed the concentration of the purified mAb and the content of monomers and aggregates, while the tween concentration primarily influenced the main peak of the charge variants. This is the first study that evaluates the impact of tween concentration in buffers on the protein A chromatography purification step. These studies helped in identifying the design space and defining the target robust and optimal setpoints of the responses, which were subsequently verified experimentally. These setpoints not only passed the target criteria but also resulted in the highest recoveries during the investigation. Through this statistically-aided approach, an optimized and robust protein A chromatography process was rationally developed for purification of mAbs, while achieving the desired product quality. This study highlights the influence of multiple parameters of the protein A purification process on critical quality attributes of mAbs, such as the size and charge variants, which has been a very scarcely explored area.


Asunto(s)
Anticuerpos Monoclonales , Polisorbatos , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Proteína Estafilocócica A , Técnicas de Cultivo de Célula , Concentración de Iones de Hidrógeno
9.
J Pharm Biomed Anal ; 234: 115575, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37467528

RESUMEN

Controlling monoclonal antibody aggregation at the upstream stage itself can significantly reduce the burden on downstream processing and can improve the process yield. Hence, we have investigated the use of sugar osmolytes (glucose, mannose, sucrose and maltose) and formulation excipients (mannitol, polysorbate 20 and polysorbate 80) as medium additives to reduce protein aggregation during cell culture. Aggregate content in cell culture samples was estimated using a high-resolution size-exclusion chromatography technique, which efficiently resolved the antibody monomer and aggregates in the cell culture matrix i.e., without purification. Glucose, mannose, maltose and the polysorbates effectively reduced the mean aggregate content over the course of the culture. Sugar-based additives exhibited a higher degree of variation during aggregate quantitation as compared to polysorbate additives, rendering the latter a preferred additive. Therefore, this study demonstrated the potential of sugar osmolytes and formulation excipients as media additives during cell culture to reduce aggregate formation, without negatively impacting cell growth and antibody production, facilitated by the monitoring of aggregate content in cell culture samples without purification.


Asunto(s)
Anticuerpos Monoclonales , Excipientes , Anticuerpos Monoclonales/química , Excipientes/química , Maltosa , Manosa , Polisorbatos/química , Cromatografía en Gel , Técnicas de Cultivo de Célula/métodos , Glucosa
10.
Biotechnol Prog ; 39(6): e3370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37348004

RESUMEN

Therapeutic monoclonal antibodies (mAbs) are biologics produced using mammalian cells and represent an important class of biotherapeutics. Aggregation in mAbs is a major challenge that can be mitigated by rigorous and reproducible upstream and downstream approaches. The impact of frequently used surfactants, like polysorbate 20, polysorbate 80, poloxamer 188, and 2-hydroxypropyl-beta-cyclodextrin, on aggregation of mAbs during cell culture was investigated in this study. Their impact on cell proliferation, viability, and mAb titer was also investigated. Polysorbate 20 and polysorbate 80 at the concentration of 0.01 g/L and poloxamer 188 at the concentration of 5 g/L were found to be effective in reducing aggregate formation in cell culture medium, without affecting the cell growth or viability. Furthermore, their presence in culture media resulted in increased cell proliferation as compared to the control group. Addition of these surfactants at the specified concentrations increased monomer production while decreasing high molecular weight species in the medium. After mAbs were separated, using protein "A" chromatography, flasks with surfactant exhibited improved antibody stability, when analyzed by DLS. Thus, while producing aggregation-prone mAbs via mammalian cell culture, these excipients may be employed as cell culture medium supplements to enhance the quality and yield of functional mAbs.


Asunto(s)
Anticuerpos Monoclonales , Tensoactivos , Animales , Anticuerpos Monoclonales/química , Técnicas de Cultivo de Célula/métodos , Poloxámero/farmacología , Polisorbatos/farmacología , Tensoactivos/farmacología , Tensoactivos/química
11.
3 Biotech ; 13(6): 184, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37193324

RESUMEN

In this investigation, the macromolecular crowding effect of a carbohydrate-based polymer, pullulan, and a salt-based polymer, poly-(4-styrenesulfonic-acid) sodium salt (PSS) was compared for the storage of A549 lung carcinoma cells, at temperatures greater than that of liquid nitrogen storage tanks. A DoE-CCD response surface model was used to optimise medium compositions comprising DMSO and a macromolecular crowder (MMC; pullulan, PSS and their combinations). The effect of adding MMCs was evaluated in terms of post-preservation viability, apoptotic population and growth curve analysis. The optimised medium consisting of 10% DMSO and 3% pullulan in the basal medium (BM) could facilitate long-term cell preservation for 90 days at - 80 °C, resulting in cell viability of ∼83%. The results also showed a significant decrease in the apoptotic population at all time points for the optimised composition of the freezing medium. These results indicated that adding 3% pullulan to the freezing medium improved the post-thaw viability and reduced the apoptotic cell population. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03571-6.

12.
Cytotechnology ; 75(3): 165-193, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187945

RESUMEN

The success of in vitro 3D models in either recapitulating the normal tissue physiology or altered physiology or disease condition depends upon the identification and/or quantification of relevant biomarkers that confirm the functionality of these models. Various skin disorders, such as psoriasis, photoaging, vitiligo, etc., and cancers like squamous cell carcinoma and melanoma, etc. have been replicated via organotypic models. The disease biomarkers expressed by such cell cultures are quantified and compared with the biomarkers expressed in cultures depicting the normal tissue physiology, to identify the most prominent variations in their expression. This may also indicate the stage or reversal of these conditions upon treatment with relevant therapeutics. This review article presents an overview of the important biomarkers that have been identified in in-vitro 3D models of skin diseases as endpoints for validating the functionality of these models. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00574-2.

13.
Anal Methods ; 15(20): 2497-2504, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37183665

RESUMEN

Tuberculosis (TB) is one of the world's deadliest infections caused by Mycobacterium tuberculosis (MTB). Though curable, the disease goes undetected in early stages owing to the lack of rapid, simple, cost-effective, and sensitive detection methods. In this investigation, we describe a procedure which is superior, more sensitive, and easier to handle, as compared to the previously reported, nanoparticle-based visual colorimetric assays for rapid detection of TB DNA, after its PCR amplification. This assay employs plasmonic gold nanoparticles (GNP) as a colorimetric agent and ethanol to promote aggregation of GNPs, thereby specifically detecting the amplified MTB DNA. An unambiguous response was achieved within 3 min after adding the DNA amplicon to the reaction tube. This conclusion was supported by spectroscopic data. The assay is sensitive up to ∼340 femtomole levels of MTB DNA, which was amplified using 0.125 ng µL-1 of the MTB DNA template. Thus, the technique developed here may be employed as a sensitive screening tool for early diagnosis of TB infection and is valuable for low-resource settings in remote areas, because of its simplicity. This ethanol-based visual TB DNA detection method is more sensitive, and fool-proof as compared to the commonly used salt-based colorimetric TB DNA assays, to the best of our knowledge.


Asunto(s)
Nanopartículas del Metal , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Oro/química , Nanopartículas del Metal/química , Tuberculosis/diagnóstico , Tuberculosis/microbiología , ADN
14.
Appl Radiat Isot ; 196: 110795, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004293

RESUMEN

Engineered Fab fragments of monoclonal antibodies (mAbs) after radiolabeling with suitable radiometals have the potential to play a key role in personalized radioimmunotheranostics of cancer patients. In this study, we have generated Fab fragment of Cetuximab, a mAb targeting epidermal growth factor receptor (EGFR) expression and purified from the Fc and other fragments by ultrafiltration and affinity chromatography. The Cetuximab-Fab was conjugated with a suitable bifunctional chelator and radiolabeled with no-carrier-added (NCA) 64Cu produced via 64Zn (n, p) 64Cu reaction in a nuclear reactor. The radioimmunoconjugate obtained after size exclusion chromatographic separation possessed >95% radiochemical purity and it retained its integrity over at least three half-lives of the radiometal. Biodistribution studies was performed in fibrosarcoma tumor bearing Swiss mice, which demonstrated the explicit need for purification of the Cetuximab-Fab from Fc fragments. Enhanced and rapid tumor uptake with decent tumor-to-background ratio with prolonged retention was observed when radiolabeled purified Cetuximab-Fab was intravenously administered in animal models. Overall, this preclinical study established the pivotal role of separation science and technology to obtain the radioimmunoconjugate with requisite purity in order to demonstrate optimal pharmacokinetics and maximized treatment efficacy.


Asunto(s)
Inmunoconjugados , Papaína , Animales , Ratones , Cetuximab/uso terapéutico , Cetuximab/química , Cetuximab/metabolismo , Papaína/metabolismo , Distribución Tisular , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoconjugados/uso terapéutico
15.
Biotechnol J ; 18(5): e2200518, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808896

RESUMEN

BACKGROUND: Retinoblastoma (Rb) is a rare cancer of the retina that occurs during early childhood. The disease is relatively rare but aggressive, accounting for ∼3% of childhood cancers. Treatment modalities encompass the administration of large doses of chemotherapeutic drugs, which result in multiple side-effects. Therefore, it is essential to have safe and effective newer therapies and suitable physiologically relevant, alternative-to-animal, in vitro cell culture-based models to enable rapid and efficient evaluation of potential therapies. METHODOLOGY: This investigation was focused on the development of a triple co-culture model comprising Rb, retinal epithelium, and choroid endothelial cells, using a protein coating cocktail, to recapitulate this ocular cancer under in vitro conditions. This resulting model was used for screening drug toxicity, based on the growth profile of Rb cells, using carboplatin as the model drug. Further, a combination of bevacizumab and carboplatin was evaluated using the developed model, to lower the concentration of carboplatin and thereby reduce its physiological side-effects. MAJOR RESULTS: The effect of drug treatment on the triple co-culture was assessed by increase in the apoptotic profile of Rb cells. Further, the barrier properties were found to be lower with a decrease in the angiogenetic signals that included expression of vimentin. Measurement of cytokine levels signified reduced inflammatory signals due to the combinatorial drug treatment. CONCLUSIONS: These findings validated that the triple co-culture Rb model was suitable for evaluating anti-Rb therapeutics and could thereby decrease the immense load on animal trials, which are the primary screens employed for evaluating retinal therapies.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Animales , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Carboplatino/uso terapéutico , Células Endoteliales/metabolismo , Retina/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo
16.
Cytotechnology ; 75(1): 77-91, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36713064

RESUMEN

In this case-study, we demonstrate an approach for identifying correlations between nutrients/metabolites in the spent medium of CHO cell cultures and cell growth, mAb titre and critical quality attributes, using multivariate analyses, which can aid in selection of targets for medium and feed optimization. An extensive LC-MS-based method was used to analyse the spent medium composition. Partial least squares (PLS) model was used to identify correlations between nutrient composition and cell growth and mAb titre and orthogonal projections to latent structures (OPLS) model was used to determine the effect of the changing nutrient composition during the culture on critical quality attributes. The PLS model revealed that the initial concentrations of several amino acids as well as pyruvic acid and pyridoxine, governed the early cell growth, while the concentrations of TCA cycle intermediates and several vitamins highly influenced the stationary phase, in which mAb production was maximum. For the first time, with the help of the OPLS model, we were able to draw correlations between nutrients/metabolites during the culture and critical quality attributes, for example, optimizing the supply of certain amino acids and vitamins could reduce impurities while simultaneously increasing desirable glycoforms. The unique correlations obtained from such an exploratory analysis, utilizing conditions that are commonly adopted in early process development, present opportunities for optimizing the compositions of the growth media and the feed media for enhancing cell growth, mAb production and quality, thereby proving to be a useful preliminary step in bioprocess optimization. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00561-z.

17.
J Sep Sci ; 46(3): e2200521, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36463509

RESUMEN

The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography-tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography-tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography-mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography-tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan® , etc., can display pivotal analytical capabilities in automated liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.


Asunto(s)
Biosimilares Farmacéuticos , Biosimilares Farmacéuticos/análisis , Biosimilares Farmacéuticos/química , Espectrometría de Masas/métodos , Anticuerpos Monoclonales/química , Glicosilación , Polisacáridos/química
18.
ACS Infect Dis ; 9(1): 9-22, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512677

RESUMEN

Screening of biomarkers is a powerful approach for providing a holistic view of the disease spectrum and facilitating the diagnosis and prognosis of the state of infectious diseases. Unaffected by the homeostasis mechanism in the human body, urine accommodates systemic changes and reflects the pathophysiological condition of an individual. Easy availability in large volumes and non-invasive sample collection have rendered urine an ideal source of biomarkers for various diseases. Infectious diseases may be communicable, and therefore early diagnosis and treatment are of immense importance. Current diagnostic approaches preclude the timely identification of clinical conditions and also lack portability. Point-of-care (POC) testing solutions have gained attention as alternative diagnostic measures due to their ability to provide rapid and on-site results. Lateral flow assays (LFAs) are the mainstay in POC device development and have attracted interest owing to their potential to provide instantaneous results in resource-limited settings. The discovery and optimization of a definitive biomarker can render POC testing an excellent platform, thus impacting unwarranted antibiotic administration and preventing the spread of infectious diseases. This Review summarizes the importance of urine as an emerging biological fluid in infectious disease research and diagnosis in clinical settings. We review the academic research related to LFAs. Further, we also describe commercial POC devices based on the identification of urinary biomarkers as diagnostic targets for infectious diseases. We also discuss the future use of LFAs in developing more effective POC tests for urinary biomarkers of various infections.


Asunto(s)
Enfermedades Transmisibles , Humanos , Enfermedades Transmisibles/diagnóstico , Pruebas en el Punto de Atención , Biomarcadores , Bioensayo , Diagnóstico Precoz
19.
Anal Biochem ; 660: 114969, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343663

RESUMEN

The growing complexity of novel biopharmaceutical formats, such as Fc-fusion proteins, in increasingly competitive environment has highlighted the need of high-throughput analytical platforms. Multi-attribute method (MAM) is an emerging analytical technology that utilizes liquid chromatography coupled with mass spectrometry to monitor critical quality attributes (CQAs) in biopharmaceuticals. MAM is intended to supplement or replace the conventional chromatographic and electrophoretic approaches used for quality control and drug release purpose. In this investigation, we have developed an agile sample preparation approach for deploying MAM workflow for a complex VEGFR-targeted therapeutic Fc-fusion protein. Initially, a systematic time course evaluation of tryptic digestion step was performed to achieve maximum amino acid sequence coverage of >96.5%, in a short duration of 2 h, with minimum assay artifacts. This approach facilitated precise identification of five sites of N-glycosylation with successful monitoring of other CQAs such as deamidation, oxidation, etc. Subsequently, the developed MAM workflow with suitable tryptic digestion time was qualified according to the International council for harmonisation (i.e. ICH) Q2R1 guidelines for method validation. Post-validation, the analytical workflow was also evaluated for its capability to identify unknown moieties, termed as 'New Peak Detection' (i.e. NPD), and assess fold change between the reference and non-reference samples, in a representative investigation of pH stress study. The study, thus, demonstrated the suitability of the MAM workflow for characterization of heavily glycosylated Fc-fusion proteins. Moreover, its NPD feature could offer an all-encompassing view if applied for forced degradation and stability studies.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Glicosilación , Flujo de Trabajo
20.
Biotechnol Prog ; 39(1): e3304, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181372

RESUMEN

Analytical and functional characterization of batches of biologics/biosimilar products are imperative towards qualifying them for pre-clinical and clinical investigations. Several orthogonal strategies are employed to characterize the functional attributes of these drugs. However, the use of conventional techniques for online monitoring of functional attributes is not feasible. Liquid chromatography is one of the crucial unit operations during the downstream processing of biopharmaceuticals. In this work, we have demonstrated the utility of FcγRIIIA affinity chromatography as an independent quantitative functional characterization tool. FcγRIIIA affinity chromatography aided in sequential elution of Rituximab glycoform mixtures, based on varying levels of galactosylation, and thereby the affinity for the receptor protein. The predominant glycans present in the three Rituximab glycoform mixture peaks were G0F, G1F, and G2F, respectively. Dissociation rate constants were derived from the chromatographic elution profiles by the peak profiling method, for the control and glucose stress conditions. The glucose stress conditions did not result in unfavorable binding kinetics of Rituximab and FcγRIIIA. The dissociation rate constants of the glycoform mixture 2, predominantly consisting of G1F, were similar to the dissociation rate constants obtained by surface plasmon resonance. Moreover, the glycosylation profiles obtained from chromatographic estimation can be corroborated with the ADCC activity. However, the ex vivo ADCC reporter assay indicated that there was an increase in the effector activity with increasing glucose stress. Thus, FcγRIIIA affinity chromatography permitted three independent assessments via a single analysis. Such approaches can be utilized as potential process analytical technology (PAT) tools in the biosimilar development process.


Asunto(s)
Biosimilares Farmacéuticos , Rituximab/química , Biosimilares Farmacéuticos/química , Receptores de IgG/química , Polisacáridos/química , Resonancia por Plasmón de Superficie , Cromatografía de Afinidad , Citotoxicidad Celular Dependiente de Anticuerpos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...